NANOPARTÍCULAS EN LA CIUDAD DE MÉXICO

ING. SERGIO ZIRATH HERNÁNDEZ VILLASEÑOR DIRECTOR GENERAL DE CALIDAD DEL AIRE

SECRETARÍA DEL MEDIO AMBIENTE

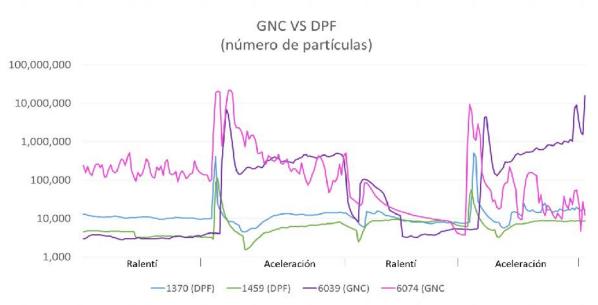
"EQUIPO CONTADOR DE NANOPARTÍCULAS"

- Esta diseñado para medir cuando el punto de muestreo se encuentra a la salida del tubo de escape de un vehículo.
- Su principio de medición utiliza carga eléctrica para contar partículas.
- Mide solo la fracción de partículas sólidas, acondiciona la muestra térmicamente para eliminar la fracción volátil.

Especificaciones:

- ➤ Rango de concentración: 1x10⁴ a 3x10⁸ p/cm³
- Tamaño de partículas: 10 a 700 nm = 0.01 a 0.70 μm
- > Temperatura del tubo de evaporación: 300°C
- > Tasa de circulación: 4.0 l/min

"COMPARACIÓN DE EMISIÓN DE PARTÍCULAS EN AUTOBUSES DE RTP A GAS NATURAL VS DIÉSEL CON FILTRO DE PARTÍCULAS".


Autobuses Evaluados

NÚMERO ECONÓMICO	AÑO - MODELO	TECNOLOGÍA
1370	2006	Diesel con Filtro de Partículas
1459	2006	Diésel con Filtro de Partículas
6074	2016	Gas Natural Comprimido
6047	2014	Gas Natural Comprimido
6081	2016	Gas Natural Comprimido
6039	2016	Gas Natural Comprimido

Resultados de medición de PN

NÚMERO	AÑO	TECNOLOGÍA	PROMEDIO DE NÚMERO DE				
ECONÓMICO	MODELO		PARTÍCULAS (p/cm³)*				
1370	2006	DIESEL CON DPF	24,082				
1459	2006	DIESEL CON DPF	17,902				
Promedio de prueb	as en dos vehícu	ulos con filtro	20,992				
6074	2016	GNC	713,669				
6047	2014	GNC	213,048				
6081	2016	GNC	55,808				
6039	2016	GNC	717,954				
Promedio de prueb	Promedio de pruebas en cuatro vehículos a GNC						
Desviación estánda	r en cuatro vehí	culos a GNC	341,561				

^{*}valor promedio de toda la prueba consistente en 4 periodos: ralentí, aceleración, ralentí, aceleración

Los autobuses equipados con DPF emiten menos cantidad de partículas por centímetro cúbico (p/cm³) que los autobuses de GNC.

Autobuses año modelo 2006 (con DPF) están por debajo de los 2014 y 2016 (a GNC).

"REPORTE DETERMINACIÓN DE EMISIONES DE VEHÍCULOS DEL METROBÚS".

Autobuses Evaluados y Resultados

# económico / estándar de cumplimiento	Temperat ura Aceite	CO (%)	CO2 (%)	CO+CO2 (%)	HC (ppm)	Valor K (1/m)	Opacidad (%)	Número de partículas (p/cm3)
808 / EPA 16	87°C	0.02	4.58	4.60	8	0.006	0.02	2.20E+04
817 / EPA 16	85°C	0.01	2.69	2.69	6	0.01	0.50	5.57E+04
818 / EPA 16	90°C	0.004	2.73	2.73	3	0.01	0.40	6.55E+04
902 / EPA 16	85°C	0.01	2.55	2.56	9	0.04	0.80	5.84E+04
917 / EPA 16	82°C	0.01	2.75	2.76	4	0.01	0.30	5.01E+04
918 / EPA 16	90°C	0.01	2.82	2.83	8	0.01	0.30	6.32E+04
463 / EURO V	91°C	0.02	2.19	2.21	4	0.14	5.80	6.32E+06
555 / EURO V-HIBRIDO	87°C	0.04	3.15	3.19	24	0.25	10.10	1.80E+07
Prot 29 / EURO V -GNC	84°C	0.01	4.71	4.72	17	0.20	8.30	1.68E+06
518 / EURO V- EEV	80°C	0.01	4.51	4.51	7	0.20	8.30	9.70E+06
265 / EURO IV	81°C	0.02	2.85	2.87	13	0.41	16.10	7.11E+06
269 / EURO IV	82°C	0.02	2.43	2.45	18	0.57	12.50	1.45E+07

Las unidad de la Línea 7 EPA16 equipadas con DPF tienen mejores resultados las de las otras Tecnologías.

Los resultados de coeficiente de absorción de luz y opacidad, de los vehículos EPA16, fueron hasta un **97.9** y **97.4**%, respectivamente, inferiores.

Resultados de Partículas

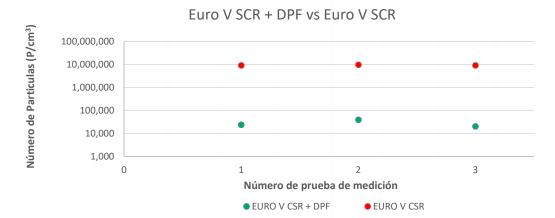
^{*} Promedio de los seis vehículos EPA 16 evaluados

http://data.metrobus.cdmx.gob.mx/docs/L7/ICCT.pdf

^{**} Promedio de los dos vehículos EURO IV evaluados

"INFORME DE PRUEBAS REALIZADAS A 2 AUTOBUSES ARTICULADOS"

Autobuses Evaluados


VIN	AÑO	KM	MARCA	MODELO	TECNOLOGÍA	COMBUSTIBLE
B12M 387733	2018	158.8	VOLVO	7300 ART	EURO V SCR + DPF	DIESEL UBA
B12M 386146	2018	147.1	VOLVO	7300 ART	EURO V SCR	DIESEL UBA

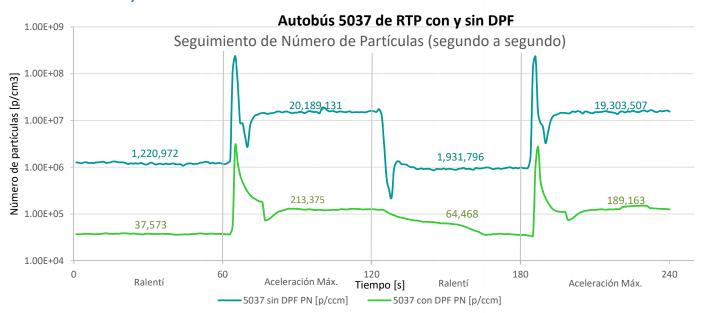
Resultados PN y Gases

			NanoMet3					
# ECONÓMICO	PRUEBA	Temperatura Motor [°C]	# partículas	Diámetro de partículas [nm]	Masa de Partículas [mg/m³]	LDSA [um²/ccm]		
007700	1	90	23,443	34	0.0001	4.13		
387733 con SCR & DPF	2	90	38,800	27	0.0002	5.62		
OOKGBIT	3	90	19,872	31	0.0005	9.39		
000440	1	90	9,003,383	68	1.91	33,457		
386146 EURO V SCR	2	90	9,559,720	69	2.02	35,426		
25.15 7 5511	3	90	8,955,219	70	1.94	33,516		

			Met 6.3								
# ECONÓMICO	PRUEBA	Temperatura Motor [°C]	CO [%]	CO2 [%]	HC [ppm]	O2 [%]	Lambda	NO [ppm]	NO ₂ [ppm]	Valor K [1/m]	Opacidad [%]
387733 con	1	90	0.0064	3.222	6.5	17.6	0.0488	163	94	0.0004	0.028
SCR & DPF	2	90	0.0090	3.342	6.1	15.6	0.0715	193	95	0.0002	0.022
JCK & DFT	3	90	0.0092	3.387	7.1	15.7	0.0688	193	91	0.0003	0.023
386146	1	90	0.0391	3.119	15.0	16.0	0.0716	349	85	0.0160	0.655
EURO V SCR	2	90	-	-	-	-	-	1	-	-	-
LONG V 3CK	3	90	-	-	-	-	-	-	-	-	-

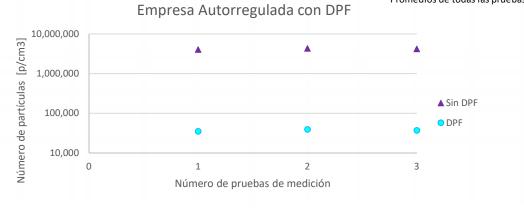
valores promedio de todas la pruebas

Porcentajes de Reducción de Partículas


Vehículo	PRUEBA	# Partículas	LDSA [um²/ccm]
386146	1	99.74%	99.99%
EURO V	2	99.59%	99.98%
SCR	3	99.78%	99.97%

Lo anterior implica que hay disminución superior al 99% de partículas ultra finas (menores de $0.1~\mu m$ o PM 0.1)

También hay un reducción de **95.70**% de **opacidad** y del **97.73**% de **coeficiente de absorción de luz**.



"PRUEBAS 2019, SEGUIMIENTO AUTOBUSES RTP Y EMPRESAS CON DPF"

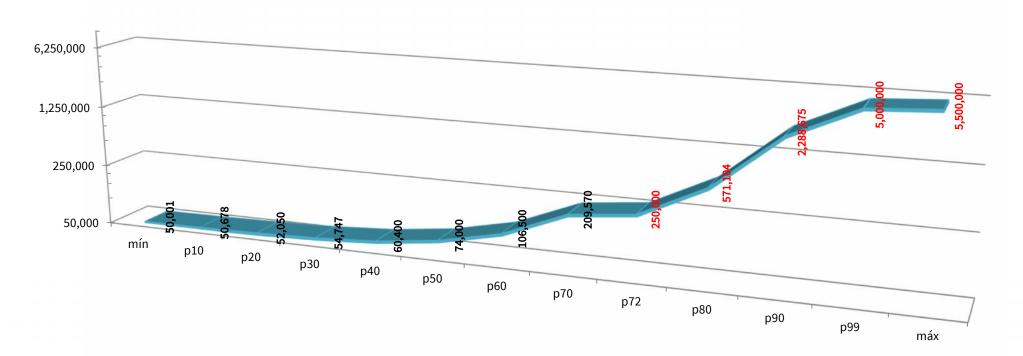
		NanoMet3					
ECONOMICO	PRUEBA	# partículas	Diámetro de partículas	Masa de Partículas	LDSA		
			[nm]	[mg/m ³]	[um²/ccm]		
	1	15,206,221	37.95	1.175	27,757		
5037	2	10,582,099	58.75	3.050	27,636		
	3	10,588,090	61.94	3.276	28,058		
	1	116,170	58.11	0.091	338		
5037	2	125,409	41.81	0.092	316		
	3	119,433	43.46	0.067	303		
	1	4,714,948	63.48	1.461	12,683		
5042	2	5,358,495	59.21	2.145	14,900		
	3	3,982,514	56.34	0.985	10,784		
	1						
5042	2	28,599	90.29	0.002	43		
	3	32,686	87.15	0.002	44		
	1	4,016,008	71.23	1.552	12,837		
17903	2	4,314,840	76.87	1.790	14,252		
	3	4,163,999	75.34	1.692	13,562		
	1	34,925	18.12	0.001	23		
17903	2	39,115	21.12	0.004	31		
	3	36,838	19.51	0.002	29		
Promedios de todas las pruebas							

		NanoMet3				
ECONOMICO	PRUEBA	# partículas	Masa de Partículas [mg/m3]	LDSA [um2/ccm]		
		99.24%	92.28%	98.78%		
5037	Reducción	98.81%	96.98%	98.86%		
		98.87%	97.97%	98.92%		
5042	Reducción	99.47%	99.93%	99.71%		
		99.18%	99.83%	99.59%		
		99.13%	99.95%	99.82%		
17903	Reducción	99.09%	99.79%	99.78%		
		99.12%	99.88%	99.79%		

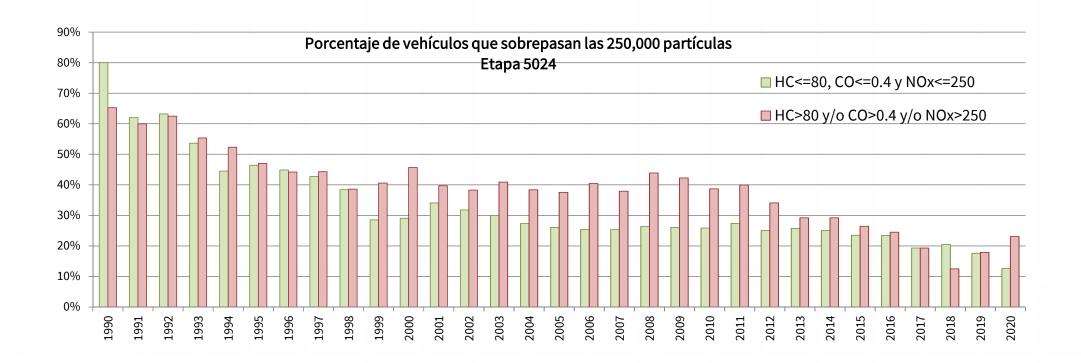
"CONTADOR DE NANOPARTICULAS EN VERIFICENTROS DE LA CDMX"

En los centros de verificación vehicular se encuentra en operación 120 equipos contadores de nanopartículas y se han efectuado 57,565 mediciones con ellos.

El intervalo de medición de los equipos instalados en los centros de verificación tienen un rango de 50,000 a 300 millones de partículas.


Para la medición de número de partículas, se utiliza un equipo sin sonda calefactada por lo que el fabricante recomendó utilizar un caudal de toma de muestra de 12 litros por minuto para reducir los efectos de aglomeración de partículas durante la medición.

El software de verificación vehicular toma las mediciones de los 10 últimos segundos de cada etapa de verificación del protocolo de Aceleración Simulada (24 y 40 km/h) y por cada segundo se toman dos muestras de número de partículas, de tal forma que para cada etapa se tienen 20 mediciones de número de partículas.


"DISTRIBUCIÓN DE LA EMISIÓN DE NANOPARTÍCULAS POR PERCENTILES"

49,759 lecturas válidas

"RELACIÓN ENTRE EMISIONES DE NANOPARTÍCULAS Y ESTADO DE OPERACIÓN DE LOS AUTOMOTORES"

GRACIAS